Illustrate targeting of cancer cells while avoiding healthy ones.
Use a vibrant color palette with blue,
purple,
and gold.
Convey cutting-edge technology and hope with a clean,
professional style.
Includes polymeric nanospheres,
nanomicelles,
nano-conjugates,
hydrophilic and hydrophobic polymers,
targeting moieties,
imaging moieties,
and amphiphilic polymers.
Uses vibrant colors and a clean scientific aesthetic with labeled diagrams.
Visualization of a virus with a focus on nanoscale features.
Representation of lipid carriers in a scientific context.
Depiction of structures that deliver therapeutic agents.
Highlighting drug delivery systems and nanotechnology applications.
An infographic displaying various scientific materials represented by different geometric shapes,
with labels like 'Hydrogel' and 'Polymer',
showcasing a clear,
structured presentation.
This image depicts pancreatic beta cells,
characterized by their pink,
fluffy appearance,
which are being shielded from cytokine-induced inflammation.
The cells are surrounded by smaller structures that represent cytokines or inflammatory markers.
Glowing orange highlights are illustrated within the cells to signify activity or protection by HDAC inhibitors.
The dark blue background enhances the contrast,
emphasizing the primary subjects.
This visual serves as an educational representation of the cellular interactions relevant to diabetes treatment and research.
Three-dimensional rendering of an engine component created through FDM 3D printing.
Engine component displayed in gray tones with a focus on shape and details.
Suitable for educational and technical presentations.
Visionary illustration of polymeric nanomedicine targeting cancer cells.
Nearby healthy cells remain untouched.
Symbols of research,
including DNA helixes and upward arrows,
represent medical progress.
Clean,
inspiring background with light rays suggest hope.
Vibrant color palette of blues,
purples,
golds.
Scene conveys optimism,
progress,
and potential of nanomedicine in cancer treatment.
High-quality artistic style blends scientific accuracy with creativity.
Light effects highlight activity among cells.
Diversity of cancer cells included to show effectiveness across types.
Detailed illustration of a futuristic drug delivery system inside a human body.
Nanotechnology devices navigate through the bloodstream.
Focus on targeting specific cells.
Highlight contrast between healthy and affected areas.
Use vibrant colors for medication flow.
Render in realistic scientific art style with high-definition visuals.
Emphasize medical technology innovation.
Photograph of a PDMS microneedles mold with a network of 10x10 pyramidal microneedles.
The mold is white and square,
featuring sharp peaks arranged evenly.
Structure of cellulose nanocrystals is illustrated.
The design shows an intricate network with a complex shape.
The texture appears soft and organic.
The color is predominantly white,
emphasizing the intricate details.
A close-up view showing a star-shaped nanomaterial structure.
The structure is predominantly blue with orange highlights.
The image highlights its complex design.
Illustrates signaling pathways involved in protecting retinal cells from oxidative stress.
Nrf2 is central to pathways modulated by anthocyanins.
Highlights key enzymes HO-1,
SOD,
CAT,
GSH-PX with apoptotic modulation.
Mainly focuses on antioxidant mechanisms.
Detailed microscopic image showing modified polyurethane surface with sulfate alginate structures.
Focus on blood compatibility enhancements.
Bright colors and sharp details highlight the science aspect.
The image showcases a close-up view of a pink electrospun vascular graft,
highlighting its intricate structure.
The graft appears to be suspended on a lab shelf in a biomedical research environment.
Soft lighting gently illuminates its texture,
emphasizing the fine details of the electrospun fibers.
The blurred background suggests a busy laboratory setting.
This visual represents advances in medical technology,
specifically in creating artificial vascular grafts through electrospinning techniques.
This image presents a highly detailed and realistic cross-sectional view of a vascular electrospinning scaffold bilayer.
The inner wall of the artery is shown in vibrant red,
emphasizing the fiber buildup along the surface.
Inside,
clusters of cells are depicted in an orderly fashion,
illustrating cellular organization.
The lumen of the artery is clearly visible,
demonstrating the inner open space.
This representation serves well for educational and research purposes in the fields of biotechnology and medicine.
Dramatic depiction of the chemical structure of epoxy CY230.
The image illustrates molecular connections with black and white representations of atoms and bonds.
Focused view on the intricate design of the molecule.
symbolizing protection.
Use a calming color palette with glowing effects.
with diagrams of mixing,
fiber production,
and an end product,
labeled with technical terms.
Futuristic medical illustration of nanotechnology for drug delivery.
Focus on smooth,
engineered surfaces with molecular structures.
Highlight smart drug delivery system with glowing particles targeting specific areas like tumors.
Create a sense of precision and innovation.
Use a color palette of blue,
white,
and soft glowing accents for a scientific feel.
create a scientific illustration of Deucravacitinib depicting cellular interactions with labeled elements
This infographic illustrates mechanisms that improve the oral bioavailability of Atorvastatin using Poloxamer 407 formulations.
It describes how solubility is enhanced,
protection from hepatic first-pass metabolism is achieved,
and micelle formation facilitates absorption.
It includes visual elements that depict each mechanism clearly.
The overall design is informative for audiences interested in pharmacology and drug formulation.
It serves as a tool for better understanding complex pharmaceutical concepts.
Schematic representation of biochemical pathways involving cyanidin-3-glucoside.
Illustrate effects on cells and metabolic processes.
Show interactions and transformations clearly.
Schematic view of the punch-out method for minimum-mass targets.
Target material is on the substrate film.
Punch-out laser pulse irradiates the back surface of the transparent substrate.
Tinfoil is ablated,
creating tin plasma at the boundary.
Remaining tinfoil is driven to high velocity by expanding plasma.